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Abstract

A sequence T = (Tn) of continuous linear operators Tn : X → X is said to be hypercyclic if there exists
a vector x ∈ X, called hypercyclic for T, such that {Tnx : n�0} is dense. A continuous linear operator,
acting on some suitable function space, is PDE-preserving for a given set of convolution operators, when it
map every kernel set for these operators invariantly. We establish hypercyclic sequences of PDE-preserving
operators onH(Cd), and study closed infinite-dimensional subspaces of, except for zero, hypercyclic vectors
for these sequences.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and notation

In what follows, X denotes an arbitrary separated real or complex locally convex space. The
algebra of continuous linear operators on X is denoted by L(X ). By N we denote the set of non-
negative integers. A sequence T = (Tn)n�0 of operators Tn ∈ L(X ) is said to be hypercyclic (or
universal) if there exists a vector x ∈ X , called hypercyclic for T, such that {Tnx : n ∈ N} is dense.
A single operator T ∈ L(X ) is said to be hypercyclic when the sequence (T n) of powers is and,
accordingly, the hypercyclic vectors for T are those for (T n). The importance of hypercyclicity
derives from the study of invariant subsets; for example, T ∈ L(X ) lacks non-trivial closed
invariant subsets if and only if every vector x �= 0 is hypercyclic for T. A hypercyclic subspace for
T (T), is a closed infinite-dimensional subspace H ⊆ X whose non-zero vectors are hypercyclic
vectors for T (T). The study of hypercyclic subspaces has become of great interest for different
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reasons. For example, it is known that every hypercyclic operator supports a dense invariant
subspace of, except for zero, hypercyclic vectors, see [9,14]; in contrast, there are hypercyclic
operators that do not admit any hypercyclic subspace, see e.g. [24, Theorem 3.4]. We refer to
[7,10,13,15,17,24,30,31] for work on this latter topic, which we shall discuss more below. We
also refer to [18] for an excellent and exhaustive survey of the theory of hypercyclicity.

In this note we study hypercyclic sequences of operators acting on the Fréchet space H =
H(Cd) of entire functions in d variables equipped with the compact-open topology (uniform
convergence on compact sets). Hypercyclicity in this setting has been studied in for example
[2,4,7,16,29]. In particular, we recall the well-known result of Godefroy and Shapiro [16, Theorem
5.2], saying that every non-trivial convolution operator on H is hypercyclic.

Definition 1. A convolution operator on H is an operator T ∈ L(H) that commutes with all
translations �a : f �→ f (a + z). (A scalar multiple of the identity operator is called a trivial
convolution operator.) The set of convolution operators on H is denoted by C.

It follows that convolution operators commute, i.e., C forms a commutative subalgebra of
L(H). In fact, we have the following nice description of C (see [16, Section 5] for details). Let
Exp = Exp(Cd) denote the algebra of exponential type functions, i.e., the set of all � ∈ H such
that |�(z)|�Mer‖z‖ for some M, r > 0, where ‖z‖ ≡ √∑

i |zi |2 if z = (z1, . . . , zd) ∈ Cd . Then
we have:

Proposition 1. The map � = ∑
�∈Nd ��z

� �→ �(D) ≡ ∑
� ��D

� defines an algebra isomor-
phism between Exp and C. Here D� = D

�1
1 . . . D

�d

d , Di ≡ �/�zi , and
∑

� ��D
�f converges in

H for all f ∈ H.

Thus, in particular, if p is a polynomial, p(D) is the differential operator obtained by replacing
each variable zi in p by Di .

In [4] (see also [8]) Bernal–González extended the result of Godefroy and Shapiro to sequences
(�n(D)) of convolution operators. He obtained the following result:

Proposition 2 (Bernal–González). Let (�n(D)) be a sequence in C. Then (�n(D)) is hypercyclic
provided (P) or (Q) holds where:

(P) There are non-empty open subsets U, V ⊆ Cd such that for any pair of finite subsets E, F of
U and V, respectively, there is a subsequence (nk) of positive integers such that �nk

(x) → 0
and �nk

(y) → ∞ for all x ∈ E and y ∈ F .
(Q) min{|�| : D��n(0) �= 0} → ∞ (n → ∞, |�| ≡ ∑

�i) and there is a non-empty open subset
U ⊆ Cd such that for any finite subset E ⊆ U , there is a subsequence (nk) of positive
integers such that �nk

(x) → ∞ for all x ∈ E.

In particular (P) extends Godefroy and Shapiro’s Theorem, since if �n = �n and � ∈ Exp is
not constant, we may take U = {z : |�(z)| < 1} and V = {z : |�(z)| > 1}.

We shall extend and complement the work of Godefroy, Shapiro and Bernal–González in the
following way. We study hypercyclic sequences of operators from a larger class than C, namely,
from the class of so-called PDE-preserving operators.

Definition 2. An operator T ∈ L(H) is PDE-preserving for a given set E ⊆ Exp if it maps every
kernel set ker �(D), � ∈ E, invariantly, that is, �(D)Tf = 0 whenever �(D)f = 0 (f ∈ H).
The set of PDE-preserving operators for E is denoted by O(E).
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Note that, for any set E, O(E) forms a subalgebra of L(H) and, in turn, C is a commutative
subalgebra of O(E). PDE-preserving operators have been studied in [26–28]. In particular, by H

we denote the set of homogeneous polynomials, and we have the following characterization result
for O(H). Let S denote the set of sequences � = (�n)n�0 in Exp such that, for some N, M, r > 0,
|�n(z)|�NMner‖z‖ for all n and z, see also Proposition 7 for an alternative description of S. By
Hn we denote the projector on H onto the space Hn of n-homogeneous polynomials defined by
f = ∑

m�0 fm �→ fn, where
∑

fm is the Taylor expansion of f ∈ H about the origin. We have
now (see e.g. [27, Theorem A]):

Proposition 3. The algebra O(H) of PDE-preserving operators for H is formed by the operators
�(D) ≡ ∑

n�0 Hn�n(D), � = (�n) ∈ S. The sequence � ∈ S is unique for �(D), i.e.,
S 	 O(H).

Note that for �(D) ∈ C, �(D) = �(D) where � is the constant sequence (�n = �). In
other words, C corresponds in S to the set of constant sequences. An important example of a
non-convolution operator in O(H) is the Euler operator 〈z, D〉 ≡ z1D1 + · · · + zdDd . For any
m�1 we have that 〈z, D〉m = �(D) where � is the sequence (�n ≡ nm)n�0 ∈ S of constant
mappings.

More specifically the objective in this note is to study sequences (�n = (�n,m)m)n in S such
that the corresponding sequence (�n(D)) in O(H) is hypercyclic. (In [29] we studied hypercyclic
operators in O(H), some of the results there follow from the more general results obtained here.)
For our purpose we shall apply the following well-known Hypercyclicity Criterion (HC), that
originates from Carol Kitai’s thesis, see [11] for a proof:

Proposition 4 (Hypercyclicity criterion). Let T = (Tn) be a sequence of operators Tn ∈ L(F)

on a separable Fréchet space F . Assume T satisfies the HC for some sequence (nk) ⊆ N in the
sense that: There are dense subsets X, Y ⊆ F (not necessarily linear) and a sequence of (possibly
discontinuous) maps S = (Snk

: Y → F) such that;

C1. Tnk
x → 0 as k → ∞ for all x ∈ X,

C2. Snk
y → 0 as k → ∞ for all y ∈ Y ,

C3. Tnk
Snk

y → y as k → ∞ for all y ∈ Y .

Then T is hereditarily hypercyclic for the sequence (nk), i.e., (Tmk
)k is hypercyclic (in fact, the

set hc((Tmk
)) of hypercyclic vectors for (Tmk

)k is dense in F) for every subsequence (mk) of (nk).

We say that T is hereditarily hypercyclic (satisfies the HC resp.) when T is hereditarily hyper-
cyclic (satisfies the HC resp.) for some sequence in N. Of course, hereditarily hypercyclic implies
hypercyclic, and it has been studied intensively to what degree the converse holds, see [11] for
more on this.

Another purpose is to study the existence of hypercyclic subspaces for the obtained classes of
hypercyclic sequences. We apply the following criterion of Bonet et al. [13] (similar criterions
can be found in [6,17,30]):

Proposition 5 (Bonet, Martínez-Giménez, Peris). Let T = (Tn) be a sequence of operators Tn ∈
L(F) on a separable Fréchet space F that admits a continuous norm. Assume there exist a closed
infinite-dimensional subspace E ⊆ F and a sequence (nk), for which T satisfies the HC, such
that Tnk

→ 0 pointwise on E. Then T has a hypercyclic subspace.
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(Note that H admits a continuous norm so the proposition applies.) Their proof rests on the
remarkable fact, see [13, Theorem 3.1] and the proof of [13, Theorem 3.5], that if T satisfies the
HC, then the corresponding sequence LT ≡ (LTn) in L(F) of left-multipliers LTn : S �→ TnS

has a compact hypercyclic vector K ∈ L(F), for the strong operator topology (SOT). Recall that
the SOT is the topology of pointwise convergence. Any such operator K maps non-zero vectors
onto hypercyclic vectors for T (see [15, Proposition 7]). As a complement to this we prove
(Theorem 5) that if a sequence T ⊆ L(F) has a hypercyclic subspace H, then we can construct a
compact one-to-one operator K ∈ L(F) with Im K ⊆ H . This is one of the factors that motivate
us to study the set of hypercyclic subspaces for our sequences of operators. In particular, we
shall apply the following complement to Proposition 5, which we have obtained in a parallel
work [31]:

Proposition 6. Let T = (Tn) be a sequence of operators Tn ∈ L(F) on a separable Fréchet
space F that admits a continuous norm. Assume there exist a complemented infinite-dimensional
subspace E ⊆ F and a sequence (nk), for which T satisfies the HC, such that Tnk

→ 0 pointwise
on E. Then T has a complemented hypercyclic subspace H that is isomorphic to E.

Recall that a subspace E ⊆ X is said to be complemented when there exists a subspace F
such that X = E ⊕ F and the corresponding projector X → E (or equivalently, the projector
X → F ) is continuous. Every complemented subspace is closed and, by the closed-graph theorem,
a subspace E ⊆ F of a Fréchet space F is complemented if and only if E is closed and F = E⊕F

for some closed F. (The existence of a complemented hypercyclic subspace H ensures thus that
there exists a projector � onto, except for zero, hypercyclic vectors.)

The paper is organized as follows. In Section 2 we obtain a sufficient condition (Theorem 1)
for sequences (�n(D)) in O(H) to be hypercyclic. We apply this result to some special type
of sequences. In particular, we complement Bernal–González’ result by considering sequences
in C, i.e. by applying Theorem 1 in the case �n(D) = �n(D) ∈ C, see Corollary 4. Another
important application is to operators in O(H), i.e. when the sequence elements �n(D) are of
the form �n(D) = �(D)n, see Corollary 1. In Section 3 we obtain sufficient conditions for the
obtained hypercyclic sequences in Section 2 to admit hypercyclic subspaces. In Section 4 we
study the corresponding sets of hypercyclic subspaces, in particular we establish the existence of
complemented hypercyclic subspaces. Finally, in the last Section 5, we discuss some consequences
of our result based on the fact that hypercyclic properties of a sequence T impose that LT is
hypercyclic. In particular, it follows that for each obtained hypercyclic sequence (�n(D)), there
exists an entire function h = h(z, �) ∈ H(Cd × Cd) such that h(·, �) is hypercyclic for (�n(D))

for any fixed � ∈ Cd , see Corollary 6.

2. Hypercyclic sequences

We recall that Hn denotes the vector space of n-homogeneous polynomials (in d variables).
With standard multi-index notation, �! ≡ ∏

�i !, |�| ≡ ∑
�i etc., we define an inner-product (·, ·)n

on Hn by (p, q)n ≡ ∑
|�|=n p(�)(0)q(�)(0)/�! The symbol ‖ · ‖n denotes the corresponding norm

defined by ‖p‖2
n ≡ (p, p)n. (See in (2) below how ‖ · ‖n relates to the sup-norm.)

The compact-open topology on H = H(Cd) is generated by the seminorms ‖f ‖H :r ≡∑
n�0 rn‖Hnf ‖n/

√
n!, r > 0 (this follows by inequalities (2) below). Let us also recall that

Hn denotes the projector on H onto Hn defined by f = ∑
fm �→ fn, where

∑
m�0 fm is the

Taylor expansion of f about the origin.



172 H. Petersson / Journal of Approximation Theory 138 (2006) 168–183

The following estimates will play a central role:

‖p‖n‖q‖m �‖pq‖n+m �2n+m‖p‖n‖q‖m, (1)

where p ∈ Hn and q ∈ Hm. If p ∈ Hn, p(D) maps Hm+n into Hm, and the operator “mul-
tiplication by p”, which we simply denote by p, maps Hm into Hm+n. In fact, if p̄ denotes the
n-homogeneous polynomial obtained from p by conjugating its coefficients, p̄ : Hm → Hm+n is
the Hilbert adjoint of p(D) : Hm+n → Hm which gives:

Lemma 1. Let p be a non-zero element of Hn. Then the composition p(D)p̄ is an isomorphism
on H, and maps every Hm bijectively.

Proof. We only prove the last statement, as this is actually what we need. Since p(D)∗ = p̄,
ker p(D)⊥ = Im p̄ and hence Hm+n = ker p(D) ⊕ Im p̄. Next, p̄ is injective so p(D)∗ = p̄

implies p(D) : Hm+n → Hm is surjective, and the statement follows. �

The first result, that p(D)p̄ maps H isomorphically, is due to Shapiro [32], and the second
statement is Ernst Fischer’s classical theorem from 1911, see [32] for remarks.

Lemma 2. Let p be a non-zero element of Hn. Then p̄(p(D)p̄)−1 maps Hm into Hm+n with
norm �1/‖p‖n.

Proof. Put P ≡ p̄(p(D)p̄)−1 and let f ∈ Hm. Then with g ≡ (p(D)p̄)−1f , p̄g = Pf and
Cauchy–Schwartz’ inequality and (1) give:

‖f ‖m‖g‖m = ‖p(D)p̄g‖m‖g‖m �(p(D)p̄g, g)m = (p̄g, p̄g)m+n = ‖p̄g‖2
m+n

� ‖p‖n‖Pf ‖m+n‖g‖m,

since ‖p̄‖m = ‖p‖m. This proves the lemma. �

In view of our purposes, it is convenient to make use of the following alternative description
of the sequence class S that we introduced in the paragraph before Proposition 3.

Proposition 7. A sequence � = (�n) in Exp belongs to S if and only if there are constants
M, R, r > 0, such that ‖Hm�n‖m �MRnrm/

√
m! for all m, n�0.

Proof. By Cauchy’s estimates, it is easily checked that (�n) ∈ S if and only if sup‖z‖�1|Hm�n(z)|
�MRnrm/m! for some M, R, r > 0. Hence the proposition follows by the following relation
between ‖ · ‖n and the sup-norm

sup
‖z‖�1

|p(z)|�‖p‖n/
√

n!�(n + 1)d/2dn/2 sup
‖z‖�1

|p(z)|, p ∈ Hn (2)

(see [32, p. 519], and see also the proof of Lemma 3 in [29], for further comments). �

Hence, in particular, a sequence (pn) of homogeneous polynomials pn belongs to S if and only
if ‖pn‖d(n) �MRnrd(n)/

√
d(n)! for some M, R, r > 0, where d(n) denotes the degree of pn. So

if �n = (pn,m)m, n ∈ N, are sequences of homogeneous polynomials and d(n, m) ≡ deg pn,m,
then (�n = (pn,m)m)n forms a sequence in S if and only if for each n�0 there are constants
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Mn, Rn, rn > 0 such that

‖pn,m‖d(n,m) �MnR
m
n rd(n,m)

n /
√

d(n, m)!, m = 0, 1, . . . .

Theorem 1. Let (�n = (pn,m)m)n be a sequence in S where pn,m are homogeneous polynomials.
Assume there is a sequence (nk) ⊆ N such that limk d(k, m) = ∞ for every fixed m, the sequence
(d(k, m))m�0 is increasing for fixed k, and

lim
k→∞ inf

m�0

√
d(k, m)‖pnk,m‖1/d(k,m)

d(k,m) = ∞, (3)

where d(k, m) ≡ deg pnk,m. Then (�n(D)) satisfies the HC, and is thus hereditarily hypercyclic,
for (nk).

Proof. We prove that (�n(D)) satisfies the HC for (nk) with X andY being the set P of polynomi-
als. We define Sn : P → H by Sn ≡ ∑

m�0 p̄n,m(pn,m(D)p̄n,m)−1Hm. Using that p(D)Hm+n =
Hmp(D) for any n-homogeneous polynomial p, it is easily checked that Sn is a right inverse to
Tn ≡ �n(D) on P , so C3 holds. We must prove that Snk

f → 0 for any f ∈ P . By Lemma 2 we
obtain for every r > 0 the estimate

‖Snk
f ‖H :r =

∑

m�0

rm+d(k,m)

√
(m + d(k, m))! ‖p̄nk,m(pnk,m(D)p̄nk,m)−1Hmf ‖m+d(k,m)

�
∑

m�0

rd(k,m)

√
d(k, m)! ‖pnk,m‖d(k,m)

rm

√
m! ‖Hmf ‖m

� ‖f ‖H :r sup
m�0

rd(k,m)

√
d(k, m)!‖pnk,m‖d(k,m)

, (4)

since m!n!�(m+n)! and m+ d(k, m) �= m′ + d(k, m′) if m �= m′. Thus, we must prove that the
last factor (the supremum-factor) in (4) tends to zero for every r > 0, and we claim that this is
equivalent to (3). Indeed, by Stirling’s formula, (n!)1/n ∼ n/e (n → ∞), we may find constants
a, b > 0 so that an�(n!)1/n �bn for all n�1. Hence

(A
√

d(k, m))d(k,m) �
√

d(k, m)!�(B
√

d(k, m))d(k,m)

for all k, m�0 for some A, B > 0, and our claim follows now easily (the details are left to the
reader). Thus Snk

f → 0 so C2 holds. Finally, since limk d(k, m) = ∞ for fixed m, Tnk
f = 0 for

all k sufficiently large when f is a polynomial. Hence Tnk
→ 0 pointwise on P = X, and C1–C3

have been established. �

Example 1. Let p be any non-zero k-homogeneous polynomial where k�1, and put pn,m ≡
(m + kn)npn and �n ≡ (pn,m)m. Then �n(D) = ∑

m�0 Hmpn,m(D) equals p(D)n〈z, D〉n. We
note that deg pn,m = kn, and

inf
m�0

√
kn‖pn,m‖1/(kn)

kn = √
kn(kn)1/k‖pn‖1/(kn)

kn �
√

kn(kn)1/k‖p‖1/k
k → ∞

as n → ∞, since ‖pn‖kn �‖p‖n
k by (1). Thus (�n) satisfies the hypothesis of Theorem 1 for

the full sequence (n), and so (�n(D)) is hypercyclic. In the same way (take pn,m ≡ (m +
k)np) we conclude that the sequence (p(D)〈z, D〉n) is hypercyclic. (Parenthetically we note that
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(〈z, D〉np(D)n) is not hypercyclic, since 〈z, D〉np(D)nf vanishes at the origin for any (non-
constant) f ∈ H, so 1 /∈ {〈z, D〉np(D)nf }n. The same argument shows that (〈z, D〉np(D)) fails
to be hypercyclic.)

We apply Theorem 1 to some special constructions. First of all it gives us a short proof of the
following result from [29]:

Corollary 1 (Operators). Let � = (pn) be a sequence of k-homogeneous polynomials, where
k�1, such that for some c, M, R > 0, c�‖pn‖k �MRn for all n�0. Then � ∈ S and �(D) ∈
O(H) is (hereditarily) hypercyclic.

Proof. Since O(H) is a ring, we have that �(D)n = ∑
Hmpn,m(D) for some elements pn,m ∈

Exp. If � = (�n), � = (�n) ∈ S and �(D)�(D) = ∑
Hn�n(D), then

�n =
∑

m�0

�n+mHm(�n). (5)

From this formula for composition in O(H), which is proved in [26] (Theorem 6), we obtain
inductively that

pn,m = pmpm+kpm+2k . . . pm+(n−1)k.

Hence, pn,m are homogeneous polynomials where d(n, m) = deg pn,m = kn and, by (1),
‖pn,m‖d(n,m) �cn. From this it is clear that the hypothesis of Theorem 1 is satisfied for the
full sequence (n), hence (�(D)n), i.e. �(D), is hereditarily hypercyclic. �

Example 2. Let p be a non-zero k-homogenous polynomial (k�1) and � ≡ (pn ≡ (n + k)p)n,
then �(D) = p(D)〈z, D〉 and Corollary 1 gives that �(D) is hypercyclic.

Corollary 2 (Shifts). Let � = (pn) be a sequence of non-zero homogeneous polynomials pn

of degree k(n), respectively, where the sequence (k(n))n is increasing and unbounded. As-
sume that the sequence (

√
k(n)‖pn‖1/k(n)

k(n) R−n/k(n))n�0 is bounded for some R > 0 and that

limn

√
k(n)‖pn‖1/k(n)

k(n) = ∞. Then (�n(D)), �n ≡ (pn+m)m, forms a (hereditarily) hypercyclic
sequence in O(H).

Proof. The hypothesis that supn

√
k(n)‖pn‖1/k(n)

k(n) R−n/k(n) is finite implies (pn,m ≡ pn+m)m ∈
S for all n. We have that d(n, m) = deg pn,m = k(n + m), so by the hypothesis on k(n), it
remains only to prove that (3) holds (for the full sequence). So let � > 0 be arbitrary and choose
N = N(�) so that

√
k(n)‖pn‖1/k(n)

k(n) > � for all n�N . Then, for any n�N ,

inf
m�0

√
d(n, m)‖pn,m‖1/d(n,m)

d(n,m) = inf
m�0

√
k(n + m)‖pn+m‖1/k(n+m)

k(n+m) ��,

hence (3) is satisfied. �

Remark 1. The growth conditions on (pn) imply that k(n) must satisfy the following: There is
an R > 0 such that, for any r > 0, Rn/rk(n) → ∞ as n → ∞. Hence, in particular, we cannot
take k(n) = n, or that k(n) grows even faster. However, conversely, for any sequence (k(n)) ⊆ N

such that for some R > 0, limn Rn/rk(n) = ∞ for every r > 0, we can construct a sequence
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(pn) that satisfies the required growth conditions. We give an example below in the case of one
variable.

Example 3. Let 1�� > � > 0. Put k(n) = [n�] and pn ≡ 2n�
zk(n)/k(n)!, i.e. pn(D) =

2n�
Dk(n)/k(n)!. Then ‖pn‖k(n) = 2n�

/
√

k(n)!. It is easily checked that pn satisfies the growth
conditions in Corollary 2, so the elements

�n(D) =
∑

m�0

Hnpn+m(D) =
∑

m�0

2(n+m)�HmDk(n+m)/k(n + m)!,

n = 0, 1, . . . form a hypercyclic sequence (�n(D)).

We recall that every non-trivial convolution operator �(D) is hypercyclic. This means that the
sequence (�n(D)), �n(D) = ∑

m Hm�n(D) (= �(D)n = �n(D)), is hypercyclic. Thus, it is
a natural question to ask for what sequences (�n), others than the constant ones (�n = �), the
sequences �n = (�n,m ≡ �n

m)m of powers define a hypercyclic sequence (�n(D)).

Corollary 3 (Powers). Let � = (pn) be a sequence of k-homogeneous polynomials, where k�1,
such that c�‖pn‖k �MRn for some c, M, R > 0. Then (�n(D)), �n ≡ (pn

m), forms a (heredi-
tarily) hypercyclic sequence in O(H).

Proof. With pn,m ≡ pn
m, d(n, m) = deg pn,m = kn and, by (1), ‖pn,m‖d(n,m) �cn. Theorem 1

implies that (�n(D)) is hereditarily hypercyclic for the full sequence (n). �

In our last application of Theorem 1, we consider sequences of the form (�n = (pn,m = pn)m)n,
i.e. sequences (pn(D)) of convolution operators pn(D). The following result complements Propo-
sition 2:

Corollary 4 (Convolution-sequences). Let (pn) be a sequence of non-zero homogeneous poly-
nomials pn of degree k(n), respectively. Then (pn(D)) is hereditarily hypercyclic if there exists
a sequence (nk) ⊆ N such that (k(nk))k is unbounded and

lim
k→∞

√
k(nk)‖pnk

‖1/k(nk)

k(nk)
= ∞. (6)

Proof. Since (k(nk)) is unbounded, we can extract a subsequence (mk) of (nk) such that
limk k(mk) = ∞, and it is clear that limk

√
k(mk)‖pmk

‖1/k(mk)

k(mk)
= ∞. Theorem 1 gives that

(pn(D)) is hereditarily hypercyclic for the sequence (mk). �

Example 4. Any normalized sequence (pn), i.e. ‖pn‖deg pn = 1, of homogeneous polynomials,
with unbounded degrees, defines thus a hypercyclic sequence (pn(D)).

When d = 1 (note that, in this case, homogeneous polynomials are monomials and ‖czm‖m =
|c|√m! ), we can prove that the hypothesis of Corollary 4 is in fact necessary:

Theorem 2. Let (pn) be a sequence of non-zero monomials pn(z) = �nz
k(n) of degree k(n),

respectively. Then (pn(D)) is hereditarily hypercyclic if and only if there is a sequence (nk) ⊆ N

such that (k(nk))k is unbounded and limk

√
k(nk)‖pnk

‖1/k(nk)

k(nk)
= ∞, i.e.,

lim
k→∞ k(nk)|�nk

|1/k(nk) = ∞. (7)
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Proof. First of all, that (7) is equivalent to limk

√
k(nk)‖pnk

‖1/k(nk)

k(nk)
= ∞ follows by Stirling’s

formula, see the proof of Theorem 1.
Assume (pn(D)) is hereditarily hypercyclic for some sequence (mk). We prove that (k(mk))k

is unbounded. Assume not, i.e., assume k(mk)�m for all k. Let f be a hypercyclic vector for
(pmk

(D)). {pmk
(D)f }k is contained in Im T where T : Pm � p �→ p(D)f ∈ H and Pm

denotes the (finite-dimensional) space of polynomials of degree at most m. Hence Im T is finite-
dimensional which contradicts that f is hypercyclic. Thus there is a subsequence (lk) of (mk)

such that k(lk) → ∞. In particular, (plk (D)) is hypercyclic, so there exist a g ∈ H and a
subsequence (nk) of (lk) such that pnk

(D)g = �nk
Dk(nk)g → 1 in H. This implies, in particular,

that (�nk
Dk(nk)g(0))k �k0 is bounded away from zero for some k0, and we can assume k0 = 0.

We have that k(nk)�ε(k(nk)!)1/k(nk) for all k for some ε > 0 and hence,

k(nk)|�nk
|1/k(nk) �ε|�nk

Dk(nk)g(0)|1/k(nk)(|Dk(nk)g(0)|/k(nk)!)−1/k(nk) → ∞,

since (|Dk(nk)g(0)|/k(nk)!)1/k(nk) → 0 as g is entire and k(nk) → ∞. Hence (7) holds and
(k(nk)) is unbounded.

The implication in the other direction is contained in Corollary 4. �

Part of Theorem 2.13 in [8] (see also [3, Theorem 4]) is essentially the special case k(n) = n

in our Theorem 2.
Corollary 4 (Theorem 2) provides us with hypercyclic sequences of convolution operators that

do not satisfy any of the conditions (P) and (Q) in Proposition 2 (see also [8, Examples 1–3]):

Example 5. We obtain from Theorem 2 that the sequence (pn(D) = Dn/
√

n!) is hypercyclic.
Note that pn(a) = an/

√
n! → 0 for every a ∈ C. Hence (pn(D)) does not satisfy any of the

conditions (P) and (Q) in Proposition 2.

Example 6. Any entire function f = ∑
fnz

n, that is not a polynomial, defines a hypercyclic
sequence in the following way: Let (nk)denote the strictly increasing sequence defined by fnk

�= 0.
That is, n1 is the first n ∈ N such that fn �= 0, n2 the second such n and so on. Then we conclude
from Theorem 2 that (f −1

nk
Dnk )k is hypercyclic.

3. Existence of hypercyclic subspaces

Theorem 3. Let (�n = (pn,m)m)n be a sequence in S where pn,m are homogeneous polynomials.
Assume there is a sequence (nk) ⊆ N, for which (pn,m) satisfies the hypothesis of Theorem 1,
and such that (the variety) ∩k,m{a : pnk,m(a) = 0} is infinite. Then (�n(D)) has a hypercyclic
subspace.

Proof. The proof of Theorem 1 shows that (�n(D)) satisfies the HC for the sequence (nk), and
we shall apply Proposition 5. If � ∈ Exp, we have that ea ≡ e〈·,a〉 ∈ ker �(D) (〈a, b〉 ≡ ∑

aibi)
for any a ∈ Cd in the zeroset for �. Indeed, �(D)ea = �(a)ea = 0. Further, the elements ea ,
a ∈ Cd , form a linearly independent set. Hence, the hypothesis implies that E ≡ ∩k ker �nk

(D)

is infinite-dimensional (and, of course, closed). Evidently, �nk
(D) → 0 pointwise on E and hence

the theorem. �

We leave it to the reader to apply Theorem 3 for the (special type of) sequences of operators in
Corollaries 1, 2 and 3. (In fact, the sequences (operators) in Corollary 1 will be studied in detail
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in the next section.) However, we formulate its consequence when we apply it on the type of
sequences in Corollary 4:

Corollary 5. Let (pn) be a sequence of non-zero homogeneous polynomials pn of degree k(n),
respectively. Assume there is a sequence (nk) ⊆ N such that: (i) (k(nk))k is unbounded (ii) (6)
holds and (iii) ∩k{a : pnk

(a) = 0} is infinite. Then (pn(D)) has a hypercyclic subspace.

Proof. Properties (i) and (ii) imply that (pn,m ≡ pn) satisfies the hypothesis of Theorem 1 for
some subsequence (mk) of (nk) (see the proof of Corollary 4), and (iii) implies that ∩k{a :
pmk,m(a) = pmk

(a) = 0} is infinite and hence the corollary by Theorem 3. �

4. The set of hypercyclic subspaces

It is convenient to denote by H(T ) the set (possibly empty) of hypercyclic subspaces for an
operator T ∈ L(X ), and we call H(T ) the hypercyclic spectrum of T. By a result of Ansari,
see [1], T and any positive power of T have the same set of hypercyclic vectors, consequently,
H(T ) = H(T n) for any positive n ∈ N. We recall from the Introduction that T lacks non-
trivial closed invariant subsets if and only if X ∈ H(T ). Further, if H ∈ H(T ) is invariant
under T, H must be the entire space X . Observations like these, and Theorem 5, motivate us to
study the structure of the hypercyclic spectrum for hypercyclic operators. More specifically, an
application of Theorem 3, and the proof of Corollary 1, give that H(T ) �= ∅ for any operator
T = �(D) = ∑

Hnpn(D) where:

(i) {pn}n�0 ⊆ Hm\{0} for some m�1;
(ii) c�‖pn‖m �MRn/

√
n! for some M, R, c > 0 and all n�0 (m is as in (i));

(iii) ∩n�0{a : pn(a) = 0} is infinite.

The primary objective in this section is to investigate the structure of H(T ) for such operators. It
is evident that H does not belong to the hypercyclic spectrum for any such operator �(D), since
�(D)1 = 0.

We start with the following general:

Proposition 8. Let T ∈ L(F) be a surjective operator on a Fréchet space F and let H ∈
H(T ), H �= F . Then H(m) ≡ (T m)−1H , m = 0, 1, . . . are different elements of H(T ). More
specifically, H(n)\H(m) �= ∅ if m > n�0. (Note that H(0) = H .)

Proof. Since H is closed, any H(m) is closed. By the surjectivity of T m, T mH(m) = H and
from this we conclude that H(m) is infinite-dimensional and that the non-zero vectors of H(m)

are hypercyclic. Thus, H(m) ∈ H(T ) for every m�0. Next, assume H(n) ⊆ H(m) for some
m > n�0. Then H = T mH(m) ⊇ T m−nT nH(n) = T m−nH . Since H(T ) = H(T m−n),
H ∈ H(T m−n) so H must be the entire set F , which is a contradiction. �

Proposition 9. Any operator �(D) = ∑
Hnpn(D) where (pn) satisfies (i) and (ii) is surjective.

Proof. We put H and Exp into duality in the following way. For each n we define the bilinear
form 〈·, ·〉n on Hn by 〈p, q〉n ≡ (p, q̄)n. We obtain then a bilinear form 〈·, ·〉 on H × Exp by
〈f, �〉 ≡ ∑ 〈Hnf, Hn�〉n. This duality is sometimes referred to as the Martineau-duality, and
it is well-known that Exp 	 H′ in this way (see [32, p. 523] for further remarks). Hence, since
H is Fréchet, is suffices to prove that the transpose t�(D) is one-to-one and has weakly closed
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range (i.e. ker �(D)⊥ ⊆ Imt�(D)). Now, by noting that tpn(D) = pn and tHn = Hn, we
deduce that t�(D) = ∑

pnHn. Hence it is evident that t�(D) is one-to-one. Assume next that
� ∈ ker �(D)⊥. That f = ∑

fn ∈ ker �(D) means 0 = Hnpn(D)f = pn(D)Hn+mf for all n.
So for any f ∈ Hn+m ∈ ker pn(D), f ∈ ker �(D) and so 0 = 〈f, �〉 = 〈f, Hn+m�〉n+m. This
shows that every Hn+m� ∈ pnHn, for pn : Hn → Hn+m is the transpose of �n(D) : Hn+m →
Hn and so ker pn(D)⊥ = Im pn = pnHn. Hence, for each n there exists a �n ∈ Hn such that
Hn+m� = �npn, and thus, � = ∑

�npn. It remains thus only to prove that
∑

�n ∈ Exp, i.e.,
that ‖�n‖n �MRn/

√
n! for some M, R > 0. But since � ∈ Exp, ‖Hn�‖n �MRn/

√
n! for some

M, R > 0 and (1) gives

c‖�n‖n �‖pn‖m‖�n‖n �‖Hn+m�‖n+m �M
Rn+m

√
(n + m)! �M

RnRm

√
n!√m! , (8)

so
∑

�n ∈ Exp and the proof is complete. �

Remark 2. More generally, we see from (8) and the arguments in the proof that any oper-
ator �(D) = ∑

Hnpn(D) satisfying (i) and the following condition (ii)′ (weaker than (ii)):
crn �‖pn‖m �MRn/

√
n! for some M, R, r, c > 0, is surjective on H.

Proposition 10. Let T ∈ L(F) be a hypercyclic operator on a Fréchet space F , and assume
that T has a continuous right inverse S. If H is a hypercyclic subspace for T with H �= F , SmH ,
m�0, form different elements of H(T ), in fact, SnH\SmH �= ∅ when m > n�0.

Proof. We note that any continuous right inverse S is one-to-one and has closed range. Indeed,
ST forms a projector onto Im S so the image Im S is closed. That S must be injective is obvious.
Accordingly, the image SH is closed and infinite-dimensional since H is. If x is hypercyclic for T
then so is x̃ ≡ Sx, since {T nx̃}n ⊇ {T nx}n. Thus SH , and therefore any SnH , forms a hypercyclic
subspace.

Next, assume first H ⊆ SH . Then T H ⊆ T SH = H , i.e. T maps H invariantly, so H must be
the entire space F which is not the case. Hence H\SH �= ∅.

Assume now that SnH ⊆ SmH for some m > n�0. Then H = T nSnH ⊆ T nSmH =
Sm−nH . But H ∈ H(T ) = H(T m−n) and Sm−n is a right inverse to T m−n, so, from what we just
have proved, H\Sm−nH �= ∅ and we have a contradiction. �

Proposition 11. Let T ∈ L(F) be an operator on Fréchet space F that admits a continuous norm,
and assume T satisfies the HC. Assume T − � has infinite-dimensional kernel and a continuous
right inverse S ∈ L(F) for some |�| < 1. Then T admits a complemented hypercyclic subspace
H 	 ker(T − �).

Proof. We apply Proposition 6, and note first that since T −� has a right inverse S, E ≡ ker(T −�)

is complemented in F with F = E ⊕ Im S. Indeed, � ≡ S(T − �) is a projector onto Im S with
kernel ker(T − �). Since |�| < 1, T nk → 0 pointwise on E for any strictly increasing sequence
(nk), and in particular for any strictly increasing sequence (nk) for which T satisfies the HC. �

Proposition 12. Any operator �(D) = ∑
Hnpn(D) where (pn) satisfies (i) and (ii) has a

continuous right inverse. Such an inverse S is given by

S =
∑

n�0

p̄n(pn(D)p̄n)
−1Hn. (9)
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Proof. See the proof of Theorem 1. �

We now piece all things (Propositions 8–12) together, and obtain the following main result in
this section:

Theorem 4. Assume (pn) satisfies (i) through (iii) and consider the operator �(D) = ∑
Hnpn

(D). Then H(�(D)) �= ∅ but H /∈ H(�(D)), in fact, H(�(D)) contains a complemented H 	
ker �(D). Further, for any H ∈ H(�(D)) and right inverse S to �(D), e.g. (9), we have:

1. {H(m) ≡ (�(D)m)−1H }m�0 ⊆ H(�(D)) and H(n)\H(m) �= ∅ if m > n�0;
2. {SmH }m�0 ⊆ H(�(D)) and SnH\SmH �= ∅ if m > n�0.

Moreover, SmH �= H(n) for all n and m unless n = m = 0.

Proof. It remains only to prove the last statement. Put T ≡ �(D).Assume first that SmH = H(n)

where n > m. Then, by the surjectivity of T n, H = T nH(n) = T nSmH = T n−mH which is a
contradiction since H ∈ H(T n−m) and H �= H. Next, assume SmH = H(n) where m�n and not
both are equal to 0. When n = 0, and thus m > 0, this is not possible by 2, so assume m�n > 0.
Let f ∈ SmH = H(n). T n is not injective, so we can find a non-zero g ∈ ker T n ⊆ ker T m.
Then h ≡ f + g ∈ H(n)\SmH—a contradiction. Indeed, it is evident that h ∈ H(n), and since
Sm is a continuous right inverse to T m, we have H = ker T m ⊕ Im Sm, from which we conclude
that h /∈ Im Sm. �

We conclude this section with a result that applies to arbitrary sequences. Let Pm denote the
vector space of polynomials of degree at most m. If K is a continuous linear operator on H with
Im K ⊆ Pm, K is compact and from operator theory we know that I − K forms an operator
with closed range and finite-dimensional kernel. (I denotes here the identity operator.) These
observations give:

Proposition 13. Let �n = (pn,m)m, n�0, be sequences of homogeneous polynomials pn,m that
satisfy the hypothesis of Theorem 3 for the full sequence (n). Then (I −K)H forms a hypercyclic
subspace for (�n(D)) for any hypercyclic subspace H for (�n(D)) and any K ∈ L(H) with
Im K ⊆ Pm for some m.

Proof. Since I −K has closed range and finite-dimensional kernel, (I −K)H forms an infinite-
dimensional closed subspace. It suffices thus to prove that (I − K)f is hypercyclic for any
hypercyclic f. This follows by the simple observation that �n(D)f = �n(D)(I − K)f for all n
sufficiently large. Indeed, since limn deg pn,k = ∞, Pm ⊆ ker �n(D) when n is large. �

Example 7. Let K = K� be the Taylor projector of order m, that maps any f = ∑
fn ∈ H onto

its Taylor polynomial
∑

n�m fn of order m about the origin. Then Im K ⊆ Pm so Proposition 13
applies and we note that I − K = ∑

n>m Hn. (Note that K� ∈ O(H), and the projectors in O(H)

onto the spaces Pm, for which Proposition 13 thus applies, are described in [26].)

5. Consequences and remarks

We recall the result of Bonet et al. [13] saying that if T ⊆ L(F) satisfies the HC, where F
is a separable Fréchet space admitting a continuous norm, then we can find a compact operator
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K ∈ L(F) that maps non-zero vectors onto hypercyclic vectors for T. We now prove that another
sufficient condition for the existence of such an operator K, is the existence of a hypercyclic
subspace H for T, and the proof, that also can be found in [31], shows how we can construct K
out from H:

Theorem 5. Let T = (Tn) be a sequence of operators Tn ∈ L(F) on a separable Fréchet
space F admitting a continuous norm. Assume T has a hypercyclic subspace H. Then there is
a compact one-to-one operator K ∈ L(F) with Im K ⊆ H , and thus, K maps non-zero vectors
onto hypercyclic vectors for T.

Proof. The hypothesis that F admits a continuous norm implies we can find a countable equicon-
tinuous 	(F ′, F)-total subset {fn} of F ′, see [13, p. 606]. Next, since H is closed and infinite-
dimensional, H forms an infinite-dimensional Fréchet space and hence contains a basic sequence
(en), see [12,19]. (Mazur’s classical proof of that every infinite-dimensional Banach space con-
tains a basic sequence is exposed in [21, Theorem 1.a.5].) We can assume (en) is bounded,
since otherwise we multiply by suitable scalars. Choose a sequence (�n) ∈ �1 such that �n �=
0. Then K ≡ ∑

n�0 �n〈·, fn〉en is a nuclear, and hence a compact, operator. Since (fn) sep-
arates points in F and (en) is basic, K is one-to-one, and Im K ⊆ H as H is closed and
(en) ⊆ H . �

Remark 3. Assume F is a separable Fréchet space with a continuous norm. In view of Theorem
5 and its preceding paragraph, one may wonder whether every sequence T ⊆ L(F) with a
hypercyclic subspace satisfies the HC (recall that the converse is not true by [24, Theorem 3.4]).
Let us show with an example that this is, in general, false. For this, take for instance the space
F ≡ �1 of summable sequences x = (x1, x2, . . .) (i.e.

∑ |xn| < ∞), and choose any hypercyclic
operator T ∈ L(F) supporting a hypercyclic subspace H (see [20, Corollary 2.2]). Inspired by
the proof of Theorem 2.3 in [5], we define, for each n�1 and each x ∈ �1,

Tnx ≡ T nx̃ + (1 + ‖T ‖)nx̂,

where x̃ ≡ (x2, x3, . . .) (= the forward-shifted vector of x) and x̂ ≡ (x1, 0, 0, . . .) (= the
1-projected vector of x). It is evident that every Tn ∈ L(F), that is, T ≡ (Tn) is a sequence
in L(F). Observe that if x1 �= 0 then

‖Tn‖�(1 + ‖T ‖)n|x1| − ‖T ‖n‖x̃‖ → ∞ (n → ∞),

so hc(T) ⊆ {x ∈ �1 : x1 = 0}. Therefore, the set of hypercyclic vectors for T, hc(T), is
not dense in F = �1, hence T does not satisfies the HC. Now, let H1 ≡ {(0, x1, x2, . . .) :
(x1, x2, . . .) ∈ H }. It is evident that H1 is a closed infinite-dimensional subspace of �1. Finally,
if y = (0, x1, x2, . . .) ∈ H1\{0} then ỹ ≡ (x1, x2, . . .) ∈ H\{0}, whence {T nỹ : n�1} is dense
in �1. But Tny = T nỹ + 0 (n�1), so {Tny : n�1} is also dense in �1, that is, the vector y is
hypercyclic for T. Consequently, H1 is a hypercyclic subspace for T.

Our goal is now to show how, given a hypercyclic sequence T ⊆ L(H), we can obtain a
holomorphic mapping Cd → H(Cd) whose values are hypercyclic vectors for T. This will be
provided via linear mappings K such that in Theorem 5 and by virtue of a kernel-theorem for
L(H). In particular, this result will apply to the obtained hypercyclic sequences in this note (and
of course to the hypercyclic sequences in Proposition 2, especially to non-trivial convolution
operators, see the remark at the end).
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We start with a definition:

Definition 3. By S we denotes the set of entire mappings P = P(z, �) in 2d variables (z, �) ∈
Cd × Cd with the following property: For every r �0 there are constants R, M > 0 such that
sup‖z‖� r |P(z, �)|�MeR‖�‖ for all � ∈ Cd .

Note that if P ∈ S then P(·, �) ∈ H and P(z, ·) ∈ Exp for any fixed � and z, respectively. For
fixed a ∈ Cd we put ea ≡ e〈·,a〉 ∈ H (〈z, �〉 ≡ ∑

zi�i). Let us state now the following kernel
theorem for L(H) (see [28, Theorem 1] for a proof, and cf. Proposition 1):

Proposition 14 (Kernel-theorem). The map T �→ P(z, �) ≡ e−〈z,�〉T e�(z) defines a bijection
between L(H) and S. We write T = P(·, D) and have

Tf (z) =
∑

(�,�)∈Nd×Nd

P�,�z�D�f (z), (10)

where P(z, �) = ∑
�,� P�,�z���, with convergence in H.

The unique function P ∈ S is called the symbol for T = P(·, D). Note that the symbol P for
a �(D) ∈ C is P(z, �) = �(�).

Theorem 6. Let T = (Tn) be a sequence in L(H) and assume that T satisfies the HC or that T

has a hypercyclic subspace. Then there is an h ∈ S such that h(·, �) ∈ H(Cd) is hypercyclic for
T for every fixed � ∈ Cd . Such an h is given by h(z, �) ≡ Se�(z) where S ∈ L(H) is any operator
that maps non-zero vectors onto hypercyclic vectors for T (exists by our hypothesis).

Proof. Put h(z, �) ≡ Se�(z). Then h ∈ S by Proposition 14 and, since e� �= 0, h(·, �) is
hypercyclic for any fixed �. �

Corollary 6. For any sequence (�n = (pn,m)m)n in S satisfying the hypotheses of Theorem 1,
there is an h ∈ S such that for any f ∈ H, � ∈ Cd , ε > 0 and r > 0:

sup
‖z‖� r

|[�n(D)h(·, �) − f ](z)| �ε

for some n.

6. A closing remark

Many of the arguments in the previous sections apply to (non-trivial) convolution operators.
First of all, the proof of [16, Theorem 5.2] shows that any non-trivial convolution operator on
H satisfies the HC for the full sequence. Next we conclude that for any � ∈ Exp, that is not a
constant mapping and, in the case d = 1, not a polynomial, H(�(D)) �= ∅. In fact, H(�(D))

contains a complemented subspace. Indeed, we only have to note that for any such �, the zeroset
{a : �(a) − � = 0} for � − � is infinite for some � in the open unit disc (details on this are
given in [30]). Therefore, see the proof of Theorem 3, ker(�(D) − �) is infinite-dimensional.
Moreover, by a result of Meise and Taylor [23], any non-zero convolution operator (and hence
�(D)−�) has a continuous right inverse, and so �(D) has a complemented hypercyclic subspace
by Proposition 11. (It is not known whether any ordinary differential operator p(D) ∈ L(H(C))
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has a hypercyclic subspace, in particular—does D have non-empty hypercyclic spectrum?) The
result of Meise and Taylor implies also that Proposition 10 can be applied. (However, in this
case we have no general formula for the right inverses.) Moreover, Malgrange’s classical theorem
[22, Theorem 5, p. 322] states that any non-zero convolution operator on H is surjective, hence
Proposition 8 applies.

Finally, we conclude that for any non-trivial �(D) ∈ C (d is arbitrary), Theorem 6 applies
(Tn = �(D)n = �n(D)).

Acknowledgements

I would like to thank the referees for the mathematical/stylistic/bibliographic suggestions im-
proving the original manuscript. In particular, the example in Remark 3 is due to one of the
referees, and I am grateful to him/her for letting me complement (and improve) the paper by this
nice example.

References

[1] S.I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995) 374–383.
[2] R. Aron, D. Markose, On universal functions, J. Korean Math. Soc. 41 (1) (2004) 65–76.
[3] L. Bernal-González, Derivative and antiderivative operators and the size of complex domains, Ann. Polon. Math. 94

(1994) 267–274.
[4] L. Bernal-González, Hypercyclic sequences of differential and antidifferential operators, J.Approx. Theory 96 (1999)

323–337.
[5] L. Bernal-González, Norms of hypercyclic sequences, Math. Pann. 15 (2004) 221–230.
[6] L. Bernal-González, Hypercyclic subspaces in Fréchet spaces, Proc. Amer. Math. Soc., to appear.
[7] L. Bernal-González, A. Montes-Rodríguez, Non-finite dimensional closed vector spaces of universal functions for

composition operators, J. Approx. Theory 82 (1995) 375–391.
[8] L. Bernal-González, J.A. Prado-Tendero, Sequences of differential operators: exponentials, hypercyclicity and

equicontinuity, Ann. Polon. Math. 77 (2001) 169–187.
[9] J. Bès, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math. Soc. 127 (1999)

1801–1804.
[10] J. Bès, A. Conejero, Hypercyclic subspaces in omega, J. Math. Anal. Appl., to appear.
[11] J. Bès, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999) 94–112.
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